Improved detection of prostate cancer using classification and regression tree analysis.
نویسندگان
چکیده
PURPOSE To build a decision tree for patients suspected of having prostate cancer using classification and regression tree (CART) analysis. PATIENTS AND METHODS Data were uniformly collected on 1,433 referred men with a serum prostate-specific antigen (PSA) levels of < or = 10 ng/mL who underwent a prostate biopsy. Factors analyzed included demographic, laboratory, and ultrasound data (ie, hypoechoic lesions and PSA density [PSAD]). Twenty percent of the data was randomly selected and reserved for study validation. CART analysis was performed in two steps, initially using PSA and digital rectal examination (DRE) alone and subsequently using the remaining variables. RESULTS CART analysis selected a PSA cutoff of more than 1.55 ng/mL for further work-up, regardless of DRE findings. CART then selected the following subgroups at risk for a positive biopsy: (1) PSAD more than 0.165 ng/mL/cc; (2) PSAD < or = 0.165 ng/mL/cc and a hypoechoic lesion; (3) PSAD < or = 0.165 ng/mL/cc, no hypoechoic lesions, age older than 55.5 years, and prostate volume < or = 44.0 cc; and (4) PSAD < or = 0.165 ng/mL/cc, no hypoechoic lesions, age older than 55.5 years, and 50.25 cc less than prostate volume < or = 80.8 cc. In the validation data set, specificity and sensitivity were 31.3% and 96.6%, respectively. Cancers that were missed by the CART were Gleason score 6 or less in 93.4% of cases. Receiver operator characteristic curve analysis showed that CART and logistic regression models had similar accuracy (area under the curve = 0.74 v 0.72, respectively). CONCLUSION Application of CART analysis to the prostate biopsy decision results in a significant reduction in unnecessary biopsies while retaining a high degree of sensitivity when compared with the standard of performing a biopsy of all patients with an abnormal PSA or DRE.
منابع مشابه
Improved Prediction of the Pathologic Stage of Patient With Prostate Cancer Using the CART–PSO Optimization Analysis in the Korean Population
Objective: In current practice, medical experts use the pathological stage predictions provided in the Partin tables to support their decisions. Hence, the Partin tables are based on logistic regression built from the US data. In the present study, we developed a data-mining model to predict the pathologic stage of prostate cancer. In this newly developed model, using the classification and reg...
متن کاملDIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION
Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...
متن کاملمعرفی الگوریتم های مدل رده بندی درختی و کاربرد آن در تعیین عوامل مؤثر بر ابتلا به سرطان مری در استان گلستان
Background & objective: One of the common purposes of medical research is Determination of effective factors on the occurrence of event. Due to the interaction of risk factors regression models, discriminant analysis and classification procedures used. Uses of these models require making the assumption which in the medical data isn’t usually established. Therefore, alternative methods must be u...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملApplying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study
Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...
متن کاملApplying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study
Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of clinical oncology : official journal of the American Society of Clinical Oncology
دوره 23 19 شماره
صفحات -
تاریخ انتشار 2005